Search results for "state-space models."

showing 5 items of 5 documents

Testing hypotheses in evolutionary ecology with imperfect detection: capture-recapture structural equation modeling.

2012

8 pages; International audience; Studying evolutionary mechanisms in natural populations often requires testing multifactorial scenarios of causality involving direct and indirect relationships among individual and environmental variables. It is also essential to account for the imperfect detection of individuals to provide unbiased demographic parameter estimates. To cope with these issues, we developed a new approach combining structural equation models with capture-recapture models (CR-SEM) that allows the investigation of competing hypotheses about individual and environmental variability observed in demographic parameters. We employ Markov chain Monte Carlo sampling in a Bayesian frame…

0106 biological sciencesPopulation Dynamicsselection gradient analysesBiologystate-space models010603 evolutionary biology01 natural sciencesModels BiologicalStructural equation modelingMark and recapture010104 statistics & probabilitystructural equation modelslife history tradeoffsAnimalsPasseriformes0101 mathematicsSet (psychology)Ecology Evolution Behavior and SystematicsSelection (genetic algorithm)Ecosystemcapture-recapture models[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyEcologyModel selectionCyanistesindividual heterogeneitybiology.organism_classificationCausalityBiological Evolutionevolutionary ecologyEvolutionary ecology[SDE.BE]Environmental Sciences/Biodiversity and EcologyEcology
researchProduct

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct

Particle Group Metropolis Methods for Tracking the Leaf Area Index

2020

Monte Carlo (MC) algorithms are widely used for Bayesian inference in statistics, signal processing, and machine learning. In this work, we introduce an Markov Chain Monte Carlo (MCMC) technique driven by a particle filter. The resulting scheme is a generalization of the so-called Particle Metropolis-Hastings (PMH) method, where a suitable Markov chain of sets of weighted samples is generated. We also introduce a marginal version for the goal of jointly inferring dynamic and static variables. The proposed algorithms outperform the corresponding standard PMH schemes, as shown by numerical experiments.

Signal processing010504 meteorology & atmospheric sciencesMarkov chainGeneralizationComputer scienceBayesian inferenceMonte Carlo method020206 networking & telecommunicationsMarkov chain Monte Carlo02 engineering and technologystate-space modelsTracking (particle physics)Bayesian inference01 natural sciencesParticle FilteringStatistics::Computationsymbols.namesake0202 electrical engineering electronic engineering information engineeringsymbolsParticle MCMCParticle filterMonte CarloAlgorithm0105 earth and related environmental sciences
researchProduct

A New Method to Reconstruct Quantitative Food Webs and Nutrient Flows from Isotope Tracer Addition Experiments

2020

Understanding how nutrients flow through food webs is central in ecosystem ecology. Tracer addition experiments are powerful tools to reconstruct nutrient flows by adding an isotopically enriched element into an ecosystem and tracking its fate through time. Historically, the design and analysis of tracer studies have varied widely, ranging from descriptive studies to modeling approaches of varying complexity. Increasingly, isotope tracer data are being used to compare ecosystems and analyze experimental manipulations. Currently, a formal statistical framework for analyzing such experiments is lacking, making it impossible to calculate the estimation errors associated with the model fit, the…

ekosysteemit (ekologia)model selectionstate-space models.food websbayesilainen menetelmäMarkovin ketjutnutrient uptakebiomarkkerithidden Markov model (HMM)ravinteetravinnonotto (kasvit)ravintoverkotisotope tracer addition
researchProduct

Data from: Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models

2018

Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypoth…

medicine and health careage-structured modelSpatial structuretime-seriesk-fold cross validationLife SciencesMedicinestate-space modelsBayesian
researchProduct